18 research outputs found

    HM 6: Angel On The Yardarm: The Beginnings of Fleet Radar Defense and the Kamikaze Threat

    Get PDF
    My account of the USS Langley in this narrative takes her from her pre-commissioning detail to the completion of her wartime cruise.https://digital-commons.usnwc.edu/usnwc-historical-monographs/1005/thumbnail.jp

    Employment of the Fighter Command in Home Defence

    Get PDF
    In the avalanche of literature on the Battle of Britain little recognition has been given to the notable prescience of Air Chief Marshall Sir Hugh C. T. Dowding in his advance planning for it

    Endangered right whales enhance primary productivity in the bay of fundy

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Marine mammals have recently been documented as important facilitators of rapid and efficient nutrient recycling in coastal and offshore waters. Whales enhance phytoplankton nutrition by releasing fecal plumes near the surface after feeding and by migrating from highly productive, high-latitude feeding areas to low-latitude nutrient-poor calving areas. In this study, we measured NH4 + and PO4 3- release rates from the feces of North Atlantic right whales (Eubalaena glacialis), a highly endangered baleen whale. Samples for this species were primarily collected by locating aggregations of whales in surface- Active groups (SAGs), which typically consist of a central female surrounded by males competing for sexual activity. When freshly collected feces were incubated in seawater, high initial rates of N release were generally observed, which decreased to near zero within 24 hours of sampling, a pattern that is consistent with the active role of gut microflora on fecal particles. We estimate that at least 10% of particulate N in whale feces becomes available as NH4 + within 24 hours of defecation. Phosphorous was also abundant in fecal samples: Initial release rates of PO4 3- were higher than for NH4 +, yielding low N/P nutrient ratios over the course of our experiments. The rate of PO4 3- release was thus more than sufficient to preclude the possibility that nitrogenous nutrients supplied by whales would lead to phytoplankton production limited by P availability. Phytoplankton growth experiments indicated that NH4 + released from whale feces enhance productivity, as would be expected, with no evidence that fecal metabolites suppress growth. Although North Atlantic right whales are currently rare (approximately 450 individuals), they once numbered about 14,000 and likely played a substantial role in recycling nutrients in areas where they gathered to feed and mate. Even though the NH4 + released from fresh whale fecal material is a small fraction of total whale fecal nitrogen, and recognizing the fact that the additional nitrogen released in whale urine would be difficult to measure in a field study, the results of this study support the idea that the distinctive isotopic signature of the released NH4 + could be used to provide a conservative estimate of the contribution of the whale pump to primary productivity in coastal regions where whales congregate

    Mapping the extracellular and membrane proteome associated with the vasculature and the stroma in the embryo

    No full text
    In order to map the extracellular or membrane proteome associated with the vasculature and the stroma in an embryonic organism in vivo, we developed a biotinylation technique for chicken embryo and combined it with mass spectrometry and bioinformatic analysis. We also applied this procedure to implanted tumors growing on the chorioallantoic membrane or after the induction of granulation tissue. Membrane and extracellular matrix proteins were the most abundant components identified. Relative quantitative analysis revealed differential protein expression patterns in several tissues. Through a bioinformatic approach, we determined endothelial cell protein expression signatures, which allowed us to identify several proteins not yet reported to be associated with endothelial cells or the vasculature. This is the first study reported so far that applies in vivo biotinylation, in combination with robust label-free quantitative proteomics approaches and bioinformatic analysis, to an embryonic organism. It also provides the first description of the vascular and matrix proteome of the embryo that might constitute the starting point for further developments

    Recommendations for Biomarker Identification and Qualification in Clinical Proteomics

    No full text
    Clinical proteomics has yielded some early positive results-the identification of potential disease biomarkers-indicating the promise for this analytical approach to improve the current state of the art in clinical practice. However, the inability to verify some candidate molecules in subsequent studies has led to skepticism among many clinicians and regulatory bodies, and it has become evident that commonly encountered shortcomings in fundamental aspects of experimental design mainly during biomarker discovery must be addressed in order to provide robust data. In this Perspective, we assert that successful studies generally use suitable statistical approaches for biomarker definition and confirm results in independent test sets; in addition, we describe a brief set of practical and feasible recommendations that we have developed for investigators to properly identify and qualify proteomic biomarkers, which could also be used as reporting requirements. Such recommendations should help put proteomic biomarker discovery on the solid ground needed for turning the old promise into a new reality
    corecore